Global Assessment of Reptile Distributions
  • Home
  • About
  • People
  • Activities
  • Meetings
  • Publications
  • Data
  • Links
  • Collaborations
  • BloGARD

Patterns of species richness, endemism and environmental gradients of African reptiles

28/7/2016

2 Comments

 
In our recent publication in the Journal of Biogeography, we assembled a comprehensive distribution map of all reptiles in Africa in order to quantify their geographical overlap with the other vertebrate groups, and to assess the environmental correlates underlying these patterns.
The latitudinal gradient of increasing biological diversity towards the equator is one of the best recognized patterns in biogeography, and has been acknowledged for some time. The naturalist, Alexander von Humboldt wrote of his travels over 200 hundred years ago, that as we approach the tropics, "the greater the variety of structure, form, colour, youth and vigor of organic life." A number of well-known hypotheses explaining this pervasive pattern of the increasing number of different species towards the equator have since proliferated. These include elevated ambient energy and precipitation, the number of different habitats or niches, higher plant productivity, and many more.
Until now reptile diversity gradients have remained largely unmapped and the least studied of the terrestrial vertebrates, especially in Africa. This is an important distinction because reptiles are an extremely diverse class of terrestrial vertebrates (over 10,000 species and counting), and as ectotherms, which often thrive in arid regions, their diversity patterns are thought to differ from the classic latitudinal gradient of the other land vertebrates (amphibians, birds, and mammals). In addition, the distinct reptile lineages - amphisbaenians, crocodiles, lizards, snakes, and turtles are likely to respond differently to environmental variables.

Picture
Vipera palaestinae (photo: Uri Roll)
To create our geographic distribution map of reptiles in Africa, we obtained data from a variety of field-guides and atlases, museum databases, the primary literature, IUCN assessments, and maps based on expert knowledge of reptile species and the habitats they occupy. A challenging aspect of the project was to ensure that our maps remained current with respect to new species discoveries and taxonomic name changes (which are constantly being revised), and we also had to confirm the validity of type specimen identifications and localities, especially those referenced from obscure sources and archaic museum specimens. We used GIS software to digitize and overlay the maps of each individual African reptile species (1,601 species in total!) one on top of the other, which allowed us to count the number of species present in a given area - which we call “species richness”.
Here is the product of all of that hard work - the first comprehensive richness map of all reptile species in Africa. The colour codes correspond to the number of species from low (blue) to high (red). It shows that the reptile richness map is largely congruent with previously mapped amphibian, bird, and mammal richness showing the classic species latitudinal gradient, including high richness in the arid regions not seen in the other vertebrates. But when you look at the reptile groups distinctly you see that while the overall reptile richness map mostly resembles snakes, lizards in particular are qualitatively very different. Lizard richness hotspots are widely dispersed with high diversity in tropical regions, as well as arid and mountainous areas, where the distribution of the other reptile and non-reptile groups is relatively low.

Picture
When we looked at which environmental predictors best explained these species richness maps we found that net primary productivity (the amount of photosynthetic activity by plants) and precipitation explain most of the variation in reptile and other vertebrates. This explains the clear latitudinal pattern seen in their respective maps, which reflects a strong correlation with plant productivity and rainfall as you move closer to the equator. But again, lizards are unique in that none of these environmental correlates explain their distributions. This is because lizards are well adapted to a wide range of habitats including the tropics as well as the harsh conditions of the desert where plant productivity and rainfall are low. We also showed that individual lizard species on average occupy smaller geographic distributions, reflecting their ability to occupy diverse niches.
Picture
Our findings that the distribution of lizard species in Africa is unique when compared to the other vertebrate groups now confirms a pattern that has been seen elsewhere in previous studies (i.e. Australia) and most recently by our paper on the global distribution of reptiles. This shows the importance of studying the diverse reptile groups distinctly instead of lumping them all together, and will have bearing on large-scale conservation efforts that do not represent all reptile groups.
Author: Amir Lewin
2 Comments

    Author

    Mainly maintained by Shai Meiri and Uri Roll

    Archives

    October 2022
    May 2022
    November 2021
    June 2020
    March 2020
    February 2020
    January 2020
    July 2019
    January 2019
    October 2018
    August 2018
    May 2018
    November 2017
    October 2017
    September 2017
    January 2017
    August 2016
    July 2016
    May 2016

    Categories

    All
    Africa
    Amniotes
    Australia
    Big Data
    Big-data
    Body Size
    Body-size
    Climate
    Clutch Size
    Clutch-size
    Competition
    Conservation
    Deserts & Drylands
    Diet
    Diversification
    Diversity Patterns
    Ecogeographic Rules
    Euroasia
    Evolution
    Extinctions
    Functional Diversity
    GARD History
    Geckos
    Hotspots
    In Memoriam
    Islands
    Island Syndrome
    Late Quaternary
    Latitudinal Diversity Gradient
    Lizards
    Longevity
    Metabolism
    New Guinea
    Nocturnality
    Palearctic
    Priritization
    Reproduction
    Speciation
    Tetrapods
    Tropics
    Type Specimens
    Viviparity
    Wikipedia

    RSS Feed

Powered by Create your own unique website with customizable templates.