Global Assessment of Reptile Distributions
  • Home
  • About
  • People
  • Activities
  • Meetings
  • Publications
  • Data
  • Links
  • Collaborations
  • BloGARD

Between a rock and a hard place – unique rare species face grave dangers due to human action

24/11/2021

0 Comments

 
In a recent paper published in the journal Science Advances Gopal explored drivers of phylogenetically endemic land vertebrates. He also looked at conservation attributes of regions with high phylogenetically endemic species.

We live in the age of the ‘sixth mass extinction’. Our daily activities are causing hundreds and thousands of species to be lost forever. To turn the tide on the biodiversity crisis we have to identify those regions and species that are most in need of our conservation efforts. However, the characteristics of regions or species most in need of protection are not always clear. In this work we focus on those species that have two distinct features that make especially good candidates for conservation efforts. First – they are confined to only small and distinct location on the globe – what are known as endemic species and face greater risk of extinction. Second – they are evolutionary unique - they do not have close relatives on the ‘tree of life’ and their loss will represent a loss of millions of years of evolution. Species that poses both of these attributes (phylogenetic endemics) are therefore of great conservation importance as they represent unique and threatened components of biodiversity. To explore these species, we collected data regarding the evolutionary relationships and geographic distribution of almost all land vertebrate species (~30,000 species of amphibians, birds, mammals, and reptiles). We set out to map global ‘hotpots’ of such species, understand what are the unique conditions that support them, and evaluate their current protection and threats.
Picture
Some of the range-restricted evolutionary unique species. The Red ruffed lemur (photo credit: Charles J Sharp), Madagascar fish eagle (photo credit: Anjajavy le Lodge), Hula painted frog (photo credit: Gopal Murali - own image), and Chinese Crocodile Lizard (photo credit: Holger Krisp). Images from Wikimedia Commons (apart from the painted frog).

We found that hotspots of phylogenetically endemic species mostly occur in the tropics and in the southern hemisphere along mountain ranges and in islands. Altogether, these hotspots, when combining the hotspots for all of the four above-mentioned groups, they occupy 22% of the total landmass. Hotspots that were important for all of the four groups are located in the Caribbean islands, Central America, along the Andes, eastern Madagascar, Sri Lanka, southern Western Ghats in India, and New Guinea. Although some of these regions have been previously prioritized for conservation actions, our study also found hotspots outside well-known biodiversity centres. For instance, we found the Asir mountains in Saudi Arabia to be important for such unique birds and Morocco to harbour phylogenetically endemic reptiles. Globally, these regions are mostly defined as mountainous tropical regions. This finding supports the notion that tropical mountains have an important role in the generation and maintenance of biodiversity.

Picture
Global map of Phylogenetic endemism hotspots for all land vertebrates corrected for species richness

We next quantified how human activities and climate change are threatening these hotspots. Alarmingly, we found human activities such as buildings, roads, land-use, population density, and rate of climate change to be disproportionately higher in these hotspots (when compared to regions outside them). Consequently, our study highlights that many uniquely rare species, which probably perform important roles in the ecosystem, will be the first to be lost due to global change. Furthermore, we found most of the hotspots are not adequately protected. About 70% of the hotspots regions have less than 10% overlap with protected areas. Some of these regions which require urgent conservation action are the southern Andes, Horn of Africa, Southern Africa, and the Solomon Islands.
 
To-date most conservation strategies still focus on species-rich regions or flagship species, which may miss out on regions with uniquely rare species we identified. Overall, our study emphasizes on the need for strategic conservation policy and management to safeguard the persistence of thousands of small-ranged species that represent millions of years of unique evolutionary history.

Picture
Infographic representing this work. Press to download in high resolution
Author: Gopal Murali
0 Comments

No evidence of shorter lifespans for tetrapods with higher metabolism

20/3/2020

0 Comments

 
It has long been thought that animals that ‘live slowly’, having a slow rate of metabolism, live longer than those that live their lives at a fast rate: having high metabolic rates. The notion is based on the assumption that animals with fast metabolic rates are more active, more exposed to predators, have higher rates of potentially harmful somatic mutations and produce more harmful metabolic by products such as free radicals. This tradeoff between metabolism and lifespan is commonly referred to as the ‘rate-of-living’ theory.
In a recent publication in the Journal Global Ecology and biogeography, we (Gavin Stark; Daniel Pincheira donoso and Shai Meiri) showed that the assumption under the “rate of living” theory which have been around for almost a century is unsupported by the results of our largest scale study (4,100 land vertebrate species: 2,214 endotherms & 1,886 ectotherms) to date of this theory. We could not find any connection between animal metabolic rate and longevity, either when we tested all land vertebrates (i.e. Mammals, Birds, Reptiles and Amphibians) or when we tested each group separately. In contrast, we did find other factor that did affect the lifespan of ectotherms (Reptiles and Amphibians), and it is ambient temperature. In colder regions around the world we expect species of reptiles and amphibians to live longer than other ectotherms living in warmer environments. The link between ectothermic (amphibians and reptiles) lifespan and ambient temperatures could mean that they are especially vulnerable to the unprecedented global warming that the planet is currently experiencing. Indeed, if increasing ambient temperatures reduces longevity, it may make ectothermic species more prone to go extinct as the climate warms. Our findings add a previously overlooked layer to the range of factors that are commonly thought to imperil species in the Anthropocene.
Picture
The relationship between longevity (y axis of all panels, log10 transformed) and (a–d) body mass (in g, log10 transformed) of amphibians (red circles), reptiles (black circles), birds (green triangles) and mammals (inverted blue triangles). (e–h) Mean annual temperature (regression lines only shown for amphibians and reptiles for which the relationship is significant), (i) basal metabolic rate (in ml O2/hr, log10 transformed), according to the color codes depicted in the top plots and (j) field metabolic rate (kJ/day, log10 transformed)
Author: Gavin Stark
0 Comments

    Author

    Mainly maintained by Shai Meiri and Uri Roll

    Archives

    October 2022
    April 2022
    November 2021
    June 2020
    March 2020
    February 2020
    January 2020
    July 2019
    January 2019
    October 2018
    August 2018
    May 2018
    November 2017
    October 2017
    September 2017
    January 2017
    August 2016
    July 2016
    May 2016

    Categories

    All
    Africa
    Amniotes
    Australia
    Big Data
    Big-data
    Body Size
    Body-size
    Climate
    Clutch Size
    Clutch-size
    Competition
    Conservation
    Deserts & Drylands
    Diet
    Diversification
    Diversity Patterns
    Ecogeographic Rules
    Euroasia
    Evolution
    Extinctions
    Functional Diversity
    GARD History
    Geckos
    Hotspots
    In Memoriam
    Islands
    Island Syndrome
    Late Quaternary
    Latitudinal Diversity Gradient
    Lizards
    Longevity
    Metabolism
    New Guinea
    Nocturnality
    Palearctic
    Priritization
    Reproduction
    Speciation
    Tetrapods
    Tropics
    Type Specimens
    Viviparity
    Wikipedia

    RSS Feed

Powered by Create your own unique website with customizable templates.