Global Assessment of Reptile Distributions
  • Home
  • About
  • People
  • Activities
  • Meetings
  • Publications
  • Data
  • Links
  • Collaborations
  • BloGARD

Exploring drivers of viviparity amongst global reptiles

5/10/2022

0 Comments

 
Picture Top: Cerastes vipera (a live-bearing viperid snake); bottom: Cerastes cerastes (an egg-laying congener). (Photo: Anna Zimin)
In a recent publication in Global Ecology and Biogeography we (Anna and many others) examined the selective forces that potentially drive the evolution of viviparity (live-bearing) in squamates.
Vertebrates are known for their versatility in reproductive strategies and features. Those, in turn, facilitated their successful expansion across various types of environments worldwide. For instance, the evolution of shelled eggs promoted the expansion of tetrapods into terrestrial habitats, and the retention of eggs inside the parent’s body significantly improved embryo survivability in harsh environmental conditions. Live-bearing (henceforth ‘viviparity’) evolved across all major vertebrate groups, except birds, crocodilians and turtles. Whereas it evolved only once in the mammal history, it is thought to evolve over 100 times independently in squamates (lizards and snakes), with about 20% of their species being viviparous. The prevalence of both egg-laying (oviparity) and viviparity in many squamate clades, and the multiple origins of viviparity, make squamates an excellent model to study the selective forces behind the evolution and biogeography of reproductive modes.
In this study, we aimed to examine most of the common selective forces hypothesized to drive the evolution of viviparity, and the relationship of reproductive mode with body size. Specifically, we tested the predictions that viviparity will be associated with (1) cold climates, (2) unpredictable climates, (3) high elevations (a proxy for hypoxic conditions), and (4) large adult body sizes. In order to do that, we collated a dataset for over 9,000 squamate species (about 80% of non-marine living species), making it the largest-scale study on the subject. Furthermore, because the factors mentioned above may be associated both directly and indirectly (i.e., through another factor) with reproductive mode, we used methods, such as path analysis, that enable to detect and account for such complex relationships.
Our main finding was that viviparity was strongly associated with cold climates, in line with earlier studies. In fact, there are relatively more viviparous than oviparous species in colder climates, and some of the coldest regions occupied by squamates do not include oviparous species at all. Notably, although some warm regions harbor many viviparous species (much more than the coldest climates), such regions usually include even more egg-laying species. The roles of climatic variation and of elevation were found to be less important and not straightforward. Even though the proportions of viviparity at high elevations are higher, elevation probably exerts various selective pressures and influences the prevalence of viviparity primarily through its effect on temperature. Our findings highlight the complexity of processes potentially underlying the evolution of viviparity, but they also provide clear support for low temperatures as selecting for viviparity in squamates.

Picture
Top left: Global richness of viviparous squamate species. Top right: latitudinal variation in richness of viviparous squamate species. Bottom left: Proportion of viviparous squamate species in grid cells. Bottom right: latitudinal variation in proportion of viviparous squamate species.
Author: Anna Zimin
0 Comments

Viviparity does not affect the numbers and sizes of reptile offspring

25/1/2020

1 Comment

 
In a recent publication in the Journal of Animal Ecology we show that the fundamental changes to the mode of life that viviparity brings to squamate females, were surprisingly not reflected in either the number of offspring produced at a single reproductive event (birth, clutch), or their size, or the total mass of offspring produced relative to the size of their mother. The distributions of all these traits in viviparous squamates are remarkably similar to those of oviparous ones. Incidentally we have found that the mass of a recently hatched squamate is (on average, despite much variation) similar to the mass of the egg its mother laid.
Picture
Vipera bornmuelleri on Mt. Hermon (photo Uri Roll)
1 Comment

    Author

    Mainly maintained by Shai Meiri and Uri Roll

    Archives

    October 2022
    April 2022
    November 2021
    June 2020
    March 2020
    February 2020
    January 2020
    July 2019
    January 2019
    October 2018
    August 2018
    May 2018
    November 2017
    October 2017
    September 2017
    January 2017
    August 2016
    July 2016
    May 2016

    Categories

    All
    Africa
    Amniotes
    Australia
    Big Data
    Big-data
    Body Size
    Body-size
    Climate
    Clutch Size
    Clutch-size
    Competition
    Conservation
    Deserts & Drylands
    Diet
    Diversification
    Diversity Patterns
    Ecogeographic Rules
    Euroasia
    Evolution
    Extinctions
    Functional Diversity
    GARD History
    Geckos
    Hotspots
    In Memoriam
    Islands
    Island Syndrome
    Late Quaternary
    Latitudinal Diversity Gradient
    Lizards
    Longevity
    Metabolism
    New Guinea
    Nocturnality
    Palearctic
    Priritization
    Reproduction
    Speciation
    Tetrapods
    Tropics
    Type Specimens
    Viviparity
    Wikipedia

    RSS Feed

Powered by Create your own unique website with customizable templates.