Global Assessment of Reptile Distributions
  • Home
  • About
  • People
  • Activities
  • Meetings
  • Publications
  • Data
  • Links
  • Collaborations
  • BloGARD

Unraveling evolutionary trends in New Guinean geckos

9/2/2020

2 Comments

 
Uncovering the evolutionary trajectories of species assemblages can provide fascinating insights into the past environmental and geological processes, as well as the biological traits, that have led to present day diversity patterns. Furthermore, time-calibrated phylogenies can shed light on the historical sequence and timing of speciation events which, in turn, can be used to complement geological models aimed at reconstructing the formation of the earth. In our paper published in Molecular Phylogenetics and Evolution, we focus on the Melanesian radiation of bent-toed geckos (Cyrtodactylus), a clade occurring throughout New Guinea and adjacent islands, and Australia’s tropical northeast. We examine the sequence and timing of diversification in Australo-Papuan Cyrtodactylus and investigated three biogeographic scenarios. Firstly, did Cyrtodactylus diversification originate on the Australian Craton or former proto-Papuan islands to the north. Secondly, does Australo-Papuan Cyrtodactylus diversity correlate with distinct geological regions and to what degree do they exhibit infra-regional clustering. Lastly, to what extent did New Guinea mountain uplift impact Cyrtodactylus diversification and if so when did this occur.
Picture
Cyrtodactylus serratus (Photo S. Richards)
We found that in addition to 28 recognised Australo-Papuan Cyrtodactylus species, there were ten distinct lineages that we consider candidate species. Our ancestral-state analyses support the early origin and diversification of Australo-Papuan Cyrtodactylus on the proto-Papuan islands, and indicate that once insular lineages arrived to New Guinea following the accretion of their associate island onto the mainland’s northern margin. We found a high degree of phylogenetic clustering within the regions and found compelling evidence that the East-Papuan Composite Terrane (or south-eastern Papuan Peninsula) has played a long-term important role in the accumulation of New Guinean Cyrtodactylus. Finally, we identified that the Late-Miocene uplift of New Guineas Central Cordillera was responsible for isolating north-south lineages and mediated the accumulation of diversity in a manner consistent with that observed in other tropical mountain regions.

Picture
Cyrtodactylus epiroticus (Photo Oliver Tallowin)
Picture
Geographic distribution of each of the nine major lineages are illustrated with corresponding colors on the two maps, and specimen representatives of each lineage shown on the right.
Author: Oliver Tallowin
2 Comments

Long lived reptiles: What causes reptiles to have longer lifespans?

29/10/2018

0 Comments

 
In a recent publication in Biological Journal of the Linnean Society, we present a comparative analysis exploring patterns and drivers of longevity of 1320 reptile species, spanning all orders.
In recent years, there have been many studies focusing on the effect of different ecological variables and life-history traits on the variation in longevity of specific taxonomic groups, focusing mostly on birds and mammals (with the only large- scale ectothermic study done on squamates by Scharf et al. 2015). In order to expand our knowledge on the effect of environmental and life-history variables on the variation in longevity of animals, we tested the effect of ecological variables (through various hypotheses) related to extrinsic mortality (e.g. predation) on the variation in longevity among and within lizards, snakes, turtles and crocodiles. We found that species living on islands, and in colder and more seasonal environments, live longer. Moreover, sampling more individuals increases the chances of finding older specimens, and should be corrected for when studying maximum longevity.

We hope these analyses will enable us to better understand the drivers of longevity in reptiles (and other taxa). We hope this paper will facilitate more large-scale comparative studies on the causes of the variation in longevity of tetrapods in general.
Picture
Species representing long lived reptiles (from each order) I studied in my research, in the top: right, Sphenodon punctatus, left, Aldabrachelys gigantea, in the bottom: right, Gavialis gangeticus, left, Cyclura lewisi.
Author: Gavin Stark
0 Comments

Island life only works if you’re easy-going – uncovering predictions of the island syndrome for lizard clutch size variation

18/9/2017

1 Comment

 
In a recent publication in the Journal of Biogeography we show that Insular lizards with variable clutch sizes follow the predictions of the island syndrome, while lizards with fixed clutches do not.
Life-histories of insular species are hypothesized to slow down, a phenomenon known as the "island syndrome". Insular individuals are thus expected to lay smaller clutches of larger eggs compared with individuals belonging to closely related mainland species. Most lizards have variable clutch sizes and can lay any number between one egg and a species-specific maximum, which can be well over 50 eggs. Many lizards, such as geckos and anoles, however, lay invariant small clutches of one or two eggs, and may thus be unable to manifest some aspects of the island syndrome. We tested whether insular species with either variable or invariant clutch sizes respond to insularity differently by analyzing egg, clutch, hatchling and female sizes and brood frequencies of 2,511 lizard species.
Picture
Mediodactylus kotschyi (photo Rachel Schwarz)
Picture
Pafilis & Rachel, Kalogria region NW Peloponnes (photo Shai Meiri)
We found that insular species with variable clutch sizes lay smaller clutches of larger eggs, from which larger hatchlings emerge, compared with mainland species, as expected by the island syndrome. Lizards with invariant clutch sizes, however, lay smaller clutches on islands and increase clutch frequency, compared with mainland species, perhaps because of limitations set by the female body cavity and pelvic opening. This may result from lower seasonality of tropical islands, leading to a greater spread of reproductive effort, or as a result from fluctuations in population densities caused by tropical storms. Our results also emphasize the importance of taking differences in life-history traits into account while studying lizard reproductive traits on large phylogenetic scales.
Picture
Kampana islet (photo: Rachel Schwarz)
Author: Rachel Schwarz
1 Comment

    Author

    Mainly maintained by Shai Meiri and Uri Roll

    Archives

    October 2022
    May 2022
    November 2021
    June 2020
    March 2020
    February 2020
    January 2020
    July 2019
    January 2019
    October 2018
    August 2018
    May 2018
    November 2017
    October 2017
    September 2017
    January 2017
    August 2016
    July 2016
    May 2016

    Categories

    All
    Africa
    Amniotes
    Australia
    Big Data
    Big-data
    Body Size
    Body-size
    Climate
    Clutch Size
    Clutch-size
    Competition
    Conservation
    Deserts & Drylands
    Diet
    Diversification
    Diversity Patterns
    Ecogeographic Rules
    Euroasia
    Evolution
    Extinctions
    Functional Diversity
    GARD History
    Geckos
    Hotspots
    In Memoriam
    Islands
    Island Syndrome
    Late Quaternary
    Latitudinal Diversity Gradient
    Lizards
    Longevity
    Metabolism
    New Guinea
    Nocturnality
    Palearctic
    Priritization
    Reproduction
    Speciation
    Tetrapods
    Tropics
    Type Specimens
    Viviparity
    Wikipedia

    RSS Feed

Powered by Create your own unique website with customizable templates.